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Abstract 

In lighting calculations and simulations, the emission of a light source is conventionally 
modelled using the far-field intensity, also termed luminous intensity distribution (LID). 
Previous studies have indicated that the traditional limiting photometric distance, to reach 
far-field conditions, is not always easy to determine. The “limiting photometric distance”, also 
called the “photometric limiting distance” of a light source is the “shortest distance between 
the reference plane of a light source and the effective reference plane of a photometer, for a 
given acceptable error considering the photometric inverse square law” (ISO/CIE 19476:2014, 
2014). This distance is dependent on the size of the light source, the luminous intensity 
distribution (beam angle), the spatial luminance distribution and the predetermined acceptable 
measurement error. In this paper the problems are analysed in detail for a disk-shaped light 
source, a linear light strip and a “worst case scenario” using two small (point) sources 
separated by a certain distance. The limiting photometric distance is investigated using 
different measures of error - not only for the main illumination direction but also at different 
angles of emission. 

Keywords: limiting photometric distance, far-field, near-field, goniophotometry 

 

1 Introduction 

In far-field conditions, the “luminous intensity distribution” (LID) of a light source can be 
calculated from the illuminance distribution at a given distance using the “inverse-square-law” 
which state that illuminance decreases with the square of the distance to the source, and the 
“cosine law”,: 

 
2

r
,

cos
E RI

α
⋅=    (1) 

where 
I  is the luminous intensity of the source in a given direction; 
E  is the measured illuminance by a detector; 
R  is the distance between the source and detector; 

rα  is the polar angle between the local surface normal describing the orientation of 
the photometer and the direction vector from the detector towards the photometric 
centre of the source. 

The same relationship is used to determine the LID itself. A traditional far-field 
goniophotometer is equipped with a photometer and from the measured illuminance, the 
intensity is calculated using the same formula. In practice, the LID is determined at a finite 
distance and will be termed the “apparent intensity” in this paper, while theoretical 
calculations of the LID in the limit of infinite distances, result in the true “far-field intensity”. 
The limiting photometric distance can then be defined as that distance where the difference 
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between the apparent intensity and the far-field intensity is below a given threshold, typically 
1%.  
In literature, the limiting photometric distance is stated to be at least five times the maximum 
dimension of the luminaire for near-Lambertian sources. This “practical” minimum 
measurement distance is based on the difference between two determinations of the luminous 
intensity at different distances along the optical axis of the luminaire; if it is smaller than a 
predefined threshold, typically 1%, the limiting photometric distance is said to be reached 
(CIE 070-1987, 1987). Using this criterion, a previous study (Moerman & Holmes, 1981) 
modelled floodlights analytically and showed that the limiting photometric distance may 
increase significantly for sources with narrow beam optics. 

Nowadays, large luminaires with narrow beam optics are widespread. Examples are surgical 
luminaires, road lighting and decorative lighting. Narrow beams with a full width at half 
maximum (FWHM) of only 4° can be attained for LEDs with focusing optics. Existing 
guidelines today indicate that a minimum measurement distance of 15 times the maximum 
dimension of the luminaire should be used for non-Lambertian sources (CIE 121-1996, 1996). 
A new international standard test method for LED luminaires uses a range of minimum test 
distances based on the beam angle of the luminaire and introduces a “D + S” scenario for 
luminaires which have large non-luminous spaces within their luminance distribution, where 
the size of the non-luminous space is added to the overall size in calculating the required test 
distance (CIE S 025/E:2015, 2015). Recent studies indicate that even more stringent 
requirements are necessary. (Sun C-C, 2009) calculated a far-field condition for LEDs and 
LED arrays which showed that far-field conditions are often met at far larger distances than 
conventional guidelines suggest (Moreno I, 2009). Their conclusions were experimentally 
validated by the study (Jacobs, et al., 2014) using a 2 LED array and a 5 LED array. 
Moreover, some studies argue for using a criterion based on a weighted average of the 
luminous intensity obtained in a number of angular directions. (Moreno I, 2009)  

2 The limiting photometric distance 

Consider an elementary source element sdA , on the extended light source sA , located by a 
vector sr , as in Figure 1(a). The luminance distribution function can be written as 

 s s s( , , ),L α βr    (2) 

where	  

sα  is the local polar angle between the direction vector towards P  and the local 
surface normal sn̂  at sd ,A  and 

sβ  is the local azimuthal angle with respect to an arbitrary direction. 

In far-field conditions, the source can be approximated by a point source, located at the 
photometric center C , as in Figure 1(b). Within the lighting community, the C γ−  coordinate 
system is traditionally used as follows: at the photometric center C  three mutually 
perpendicular axes can be defined, which are typically denoted first (or principal or optical) 
axis, second axis and third axis. The luminaire is oriented in the plane spanned by the second 
and third axis. If the luminaire is more extended in one direction, as for example rectangular 
luminaires, the second axis is oriented along the shortest side of the luminaire. Perpendicular 
to the second and third axis, lies the first axis. The photometric center of the luminaire is the 
intersection of these axes. Distances can be calculated from this photometric center and 
angles are specified with respect to the first and second axis. Whenever distances or angles 
are measured with respect to the photometric center, a bar will be used to indicate this by 
notation: sβ  corresponds to the angle of the C -plane, and sα  corresponds to .γ  

The apparent intensity of a light source is defined as a function of the luminance distribution 
in (Jacobs, et al., 2014) by 

 ( )
s

2
s s s s r

app s s s2
r

( , , ) cos cos, , d
cos

A

LRI R A
R

α β α αα β
α

= ∫ r
  (3) 



Jacobs, V. et. all: ANALYSES OF ERRORS ASSOCIATED WITH PHOTOMETRIC DISTANCE IN 
GONIOPHOTOMETRY 

 3 

 

	  

Figure 1: Coordinates used to determine the apparent luminous intensity of a general 
light source with an arbitrary luminance distribution. (a) Local coordinates, (b) 

coordinates with respect to the photometric center C  of the light source, where bars 
are added to the coordinates. 

 
The far-field intensity FFI  can be written as: 

 

s

FF s s s s s s s( , ) cos ( , , )
A

I L dAα β α α β= ∫ r    (4) 

Definition. The angular distribution of the limiting photometric distance can now be defined 
for each direction s s( , )α β  as that distance R  where the relative error between the apparent 
intensity appI  and the far-field intensity FFI  is less than a predefined error, for example 1%: 

 
   
R ε(R,αs ,βs ) = 1−

Iapp(R,αs )
IFF(αs )

<1%   (5) 

	  

3 A luminance model for Lambertian sources and narrow beams 

For luminaires with focusing optics creating a rotationally symmetric beam, the luminance in 
each point of the source can be modelled by 

 ( )s s s 0 s s( , , ) cos ,nL Lα β α=r r    (6) 

 where  

n  determines on the full width at half maximum (FWHM or 50α ) commonly used to 
describe the width of a distribution through  

 ( )50cos / 2 0.5.n α =    (7) 

The higher the value for n , the more narrow the beam will be, as in the upper 
panel of Figure 3. 
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4 Limiting photometric distance of a uniform disk source 

The limiting photometric distance of a uniform disk source (see Figure 2) is calculated in 
(Jacobs, et al., 2014). From Eq. (3), the apparent luminous intensity along the optical axis of a 
uniform disk source at a point P  can be calculated in general. 

 

Figure 2: Coordinates used to determine the apparent luminous intensity of a uniform 
disk source along its optical axis. 

If P  lies on the optical axis, and the surface normal of the surface and receiver are parallel, 
then r scos cos /R Rα α= = , 2 2 2R R r= +  and rcos 1α = . The apparent luminous intensity along 
the optical axis can be calculated for various beam angles n : 

 ( )
1( 2)22 2

0
app,disk

2 πI ,0,0 1 1
2 2

n
L R DR

n R

− +⎡ ⎤
⎛ ⎞⎢ ⎥× ⎡ ⎤= − ⎜ + ⎟⎢ ⎥⎢ ⎥⎜ ⎟+ ⎣ ⎦⎢ ⎥⎝ ⎠

⎣ ⎦

  (8) 

The	  far-‐field	  luminous	  intensity	  along	  the	  optical	  axis	  can	  be	  calculated	  by,	  

 ( )2FF 0π L / 2 .I D=    (9) 

Dividing	  Eq.	  (8)	  by	  Eq.	  (9),	  the	  ratio	  between	  the	  apparent	  and	  far-‐field	  intensity	  can	  be	  calculated	  for	  
various	  values	  of	   ( )n ,	  as	  in	  (5).	  The	  relative	  error	   ε 	  between	  the	  far-‐field	  intensity	  and	  the	  apparent	  
intensity	  can	  be	  calculated	  as	  a	  function	  of	  the	  distance	  to	  the	  source	  along	  the	  optical	  axis	  

 

   

ε(R,0,0) = 1−
Iapp,disk

IFF
= 1−8× 1

n+ 2
R
D

⎛
⎝⎜

⎞
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2

1− 1+ D2

4× R2

⎛

⎝
⎜

⎞

⎠
⎟

−1
2

(n+2)⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.   (10) 

Confirming	  earlier	   studies	   	   (Moerman	  &	  Holmes,	  1981),	   (Sun	  C-‐C,	  2009)	  and	   (Moreno	   I,	   2009),	   Eq.	  
(10)	   allows	   us	   to	   verify	   that	   for	   a	   Lambertian	   source	   ( 0n = )	   the	   difference	   between	   the	   apparent	  
intensity	  and	  luminous	  intensity	  along	  the	  optical	  axis	  is	  smaller	  than	  1%	  from	  a	  distance	  of	  5	  times	  
the	  diameter	  of	  the	  disk.	  This	  verifies	  the	  commonly-‐accepted	  principle	  that	  the	  limiting	  photometric	  
distance	  for	  a	  Lambertian	  source	  equals	  five	  times	  the	  maximum	  size	  of	  the	  circular	  luminaire.	  

For	  more	  narrow	  beams,	  a	  larger	  limiting	  photometric	  distance	  is	  found.	  Eq.	  (8)	  can	  be	  expanded	  into	  
a	  power	  series	  if	   2 2/ 4 1D R << ,	  i.e.	  at	  large	  distance	  with	  respect	  to	  the	  dimension	  of	  the	  source.	  

 ( )
32 2 2

app,disk 0
4I ,0,0 π 1 O ,

2 8 2
D n D DR L

R R

⎡ ⎤⎛ ⎞⎡ ⎤+⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎢ ⎥⎜ ⎟≅ − + ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎜ ⎟⎢ ⎥⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

  (11) 

where	  	  
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  O  defines the sum of all higher order terms in the expansion 

Now	  the	  relative	  error	  can	  be	  approximated	  by	  dividing	  Eq.	  (11)	  by	  Eq.	  (9).	  An	  upper	  bound	  on	  the	  
error	  is	  then	  given	  by:	  

	   	  
   
ε(R,0,0) = n+ 4

8
D
R

⎡

⎣
⎢

⎤

⎦
⎥

2

. 	  	   	   	   	   	   	   	   	   (12)	  

Using	   Eq.	   (12),	   and	     ε = 1% ,	   the	   limiting	   photometric	   distance	   is	   plotted	   as	   a	   function	   of	   the	   beam	  
width	   n 	  in	  the	  lower	  panel	  of	  Figure	  3	  and	  some	  values	  are	  calculated	  in	  Table	  1.	  The	  upper	  graph	  of	  
Figure	   3	   simultaneously	   displays	   the	   relation	   between	   the	   beam	   width	   n 	   and	   the	   full	   width	   half	  
maximum	  (FWHM)	  of	  the	  beam.	  Clearly,	  for	  narrow	  beams,	  the	  limiting	  photometric	  distance	  is	  far	  
beyond	   any	   current	   guidelines	   adopted	   in	   the	   lighting	   community,	   for	   example	   (CIE	  S	  025/E:2015,	  
2015).	  	  

	  

Table 1-  Typical values for the photometric limiting distance for a circular luminous disk 

   ε(R,0,0) 	   /R D 	  	  
5	   10	   15	   20	   30	   50	   100	  

n	  

0	   1,0%	   0,2%	   0,1%	   0,1%	   0,0%	   0,0%	   0,0%	  
1	   1,2%	   0,3%	   0,1%	   0,1%	   0,0%	   0,0%	   0,0%	  
5	   2,2%	   0,6%	   0,2%	   0,1%	   0,1%	   0,0%	   0,0%	  
10	   3,4%	   0,9%	   0,4%	   0,2%	   0,1%	   0,0%	   0,0%	  
20	   5,7%	   1,5%	   0,7%	   0,4%	   0,2%	   0,1%	   0,0%	  
40	   10,2%	   2,7%	   1,2%	   0,7%	   0,3%	   0,1%	   0,0%	  
180	   34,5%	   10,7%	   4,9%	   2,8%	   1,3%	   0,5%	   0,1%	  
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Figure 3: Circular luminous disk.  Upper panel: the FWHM is plotted as a function of n  
by solving Eq. (7). Lower panel: the limiting photometric distance (expressed with 

respect to the diameter of the circular disk) to reach an error  
below 1% is plotted using Eq. (12). 

	  

5 Limiting photometric distance for a Lambertian and quasi-1D light strip 
having a Lambertian distribution 

Consider	  a	  "linear"	  light	  strip	  of	  length	  D,	  tilted	  by	  angle	  γ.	  An	  infinitesimal	  small	  detector	  is	  located	  
at	  distance	  𝑅	  from	  the	  photometric	  center	  C 	  of	  the	  linear	  luminaire.	  	  

 

Figure 4 – A linear luminaire of length D is tilted by an angle γ . 

	  

Radiation	   transfer	   between	   two	   (Lambertian	   like)	   surfaces	   (n=0)	   can	   be	   expressed	   using	   a	  
configuration	  factor	  (or	  geometrical	  correction	  factor),	  as	  in	  	  (Howell,	  et	  al.,	  2010):	  

 

2

1 2 2
cos cos

s
A

F A
S

α α
− = ∫ r s d

π
  (13) 

    
The	  different	  quantities	  are	  defined	  as	  following:	  

 2 2( )r rS R x y= − +    (14) 

where	  	  

cosry r γ= 	  	   sinrx r γ= 	  and	  

	   rcos rR x
R

α −= 	  and	  α γ α= −r s 	  

Eq.	   (13)	   can	   be	   evaluated	   numerically,	   and	   used	   to	   calculate	   the	   error	   of	   luminous	   intensity	  
determination	  if	  the	  detector	  is	  located	  too	  close	  to	  the	  luminaire.	  The	  results	  are	  shown	  in	  Figure	  5.	  
The	   error	   for	   different	   title	   angles	   (γ	   =	   0°,10°,20°,30°...80°)	   and	   ratios	   of	   detector-‐distance-‐to-‐
luminaire-‐length	  are	  shown.	  For	  larger	  angles,	  for	  example	  70°,	  the	  a	  ratio	  of	  5	  for	   /R D 	  will	  generate	  
an	  error	  of	  5,6%,	  as	  indicated	  by	  the	  black	  square	  in	  Figure	  5.	  	  
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Figure	  5	  shows	  that	  the	  error	  increases	  dramatically	  for	  the	  off-‐axis	  case	  and	  this	  should	  be	  taken	  into	  
account	  especially	  for	  the	  calculation	  of	  partial	  luminous	  flux	  values.	  	  

	  

	  

Figure 5 – The limiting photometric distance is shown for a luminous strip for various 
angles s 0 80 .α = °K The grey band in the middle indicates the region where the error is 
below 1%. Beyond 30 times the size of the strip, the limiting photometric distance is 

reached for all angles. 

	  

In	  order	  to	  validate	  the	  formula	  and	  the	  matrix-‐oriented	  software	  code,	  an	  analytical	  solution	  can	  be	  
found	  for	  on-‐axis	  illuminance,	  corresponding	  to	  the	  line	  where	   s 0α = ° 	  in	  Figure	  5.	  Without	  more	  
detailed	  explanation	  one	  will	  get	  (Howell,	  et	  al.,	  2010):	  

 
   
ε(R,0,0) = − 1

6
D
R

⎛
⎝⎜

⎞
⎠⎟

2

   (15) 

This	  is	  the	  on-‐axis	  error	  of	  the	  far-‐field	  measurement	  of	  a	  luminaire	  with	  length	   D 	  at	  a	  distance .R 	  

	  

6 Limiting photometric distance using a point source approach 

The third approach given in this paper is based on a worst case scenario assuming a 
measurement of a luminaire with two small (point) light-emitting areas separated by a 
distance D . This is a worst case scenario of an extended light source. 

The LID of both single light sources is the sum of the two single LIDs. The measurement system is a 
illuminance meter moving on a sphere surface around the measurement object, as in Figure 6. The 
illuminance meter is located at the position s s( , , )R α β  or ( , , )x y z . With:  

sin cos sin sin cosx R y R z Rα β α β α= ⋅ ⋅ = ⋅ ⋅ = ⋅s s s s s  (16) 
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Figure 6 – The point source approach is illustrated using 2 point sources that are separated by 

a distance D along the x-axis. 

	  
And for the vectors 1r  and 2r in a Cartesian coordinate system: 

s s s

s s

s s

1 2

sin cos sin cos
2 2

sin sin and sin sin
cos cos

D DR R

R R
R R

α β α β

α β α β
α α

⎡ ⎤ ⎡ ⎤⋅ ⋅ + ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= ⋅ ⋅ = ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

r r  (17) 

For the absolute values: 

( )

( )

2
2 2

1

2

s s s s s

2
2 2

s s s s s

sin cos sin sin ( cos )
2

sin cos sin sin ( cos )
2

R R R

R

D

D R R

α β α β α

α β α β α

⎛ ⎞= ⋅ ⋅ + + ⋅ ⋅ + ⋅⎜ ⎟⎝ ⎠

⎛ ⎞= ⋅ ⋅ + ⋅ ⋅ + ⋅⎜⎝
− ⎟⎠

r

r

 (18) 

With the scalar product  1 1 s1 s

2 1 s2 s

cos cos
cos cos

z

z

r e r
r e r

R
R

α α
α α

⋅ = ⋅ = ⋅

⋅ = ⋅ = ⋅

r r
r r  s1 s

s2 2s

1cos cos
cos

/
/cos

R r
R r

α α
α α

= ⋅

= ⋅
 

Using the cosine low 2 2 2
1 1 12 cos(/ )4D r R rR ε= + − ⋅ ⋅ ⋅  the angles 1 2andε ε  can be calculated as: 

( ) ( )
2 2

2 2 2 2
1 1 1 2 2 2cos / 2 and cos / 2

4 4
D Dr r rR R rR Rε ε

⎛ ⎞ ⎛ ⎞
= + − = + − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (19) 

The measured illuminance is given as  

2 2
near 1 s1 1 1 s 22 22( ) / cos( ) ( ) / cos( )E I r I rα ε α ε= ⋅ + ⋅   (20) 

Therefore there is a difference between the measured illuminance (and the luminous intensity 
calculated with this illuminance app, 2 LIDI  and the luminous intensity (the far-field value FF, 2 LIDI ) itself. 

 
app, 2 LID

1 s,1 2 s,2 2
1 22 2

1 2

( ) ( )
cos( ) cos( )

I I
r

RI
r

α α
ε ε⎛ ⎞

= ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

  (21) 

 and  

 
FF, 2 LID 1 s 2 s( ) ( )I I Iα α= +    (22) 

This difference results from the measuring principle of the far field goniophotometer itself. 
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The angular distribution of the error can be evaluated graphically by inserting Eq. (21) and Eq. (22) 
into Eq. (5), which is shown for a few measurement distances in Figure 7. 

	  
Figure 7 – Far-field error for a sum of two Lambertian point sources  

depending on the ratio 𝑹/𝑫 and depending on the angle 𝜶𝒔 

 

7 Segmentation approach 

An alternative approach, that is not part of this paper, is based on the segmentation of the 
luminous area. The luminous area is divided into (very) small elements and the same 
luminous intensity distribution is assigned to each element. This is a common approach in 
many simulation programs to apply the far field data (luminous intensity distribution) to 
calculate illuminance values, for example for table surfaces in offices, which are located close 
to the luminaires. This approach can also be also used to calculate the limiting photometric 
distance for large light sources. The main advantage here is the possibility to analyse errors 
for real luminous intensity distributions. 

 

8 Rules of thumb 

• For Lambertian disk sources, a limiting photometric distance of five times the diameter 
of the luminaire is sufficient. 

• For disk sources with a narrow beam, the limiting photometric distance depends on 
the beam width and the diameter of the source. Putting   ε = 1% , the limiting 
photometric distance can be calculated using Eq. (10) or estimated using Eq. (12). 

• For quasi-1D light luminous stripes, the on-axis limiting photometric distance can be 
calculated using Eq. (15), while the off-axis behaviour can be derived from the 
graphical representation in Figure 5. 

• For the “worst case scenario” of two point sources, the graphical representation in 
Figure 7 can be used to estimate the resulting error. 



Jacobs, V. et. all: ANALYSES OF ERRORS ASSOCIATED WITH PHOTOMETRIC DISTANCE IN 
GONIOPHOTOMETRY 

 10 

 

 

Table 2: set of rules-of-thumb for determining the error associated with photometric distance. 

Type of light source Measurement error for far-field measurements 

Disk source with diameter D 

Eq. (12)    
ε(R,0,0) = n+ 4

8
D
R

⎡

⎣
⎢

⎤

⎦
⎥

2

 

1D luminous stripe with length D (n=0) 

Eq.(15) 
   
ε(R,0,0) = − 1

6
D
R

⎛
⎝⎜

⎞
⎠⎟

2

 

Graphical evaluation for off-axis behaviour, 
 using Figure 5 

2 point sources with distance D Graphical evaluation only, using Figure 7 

 

9 Summary 

The luminous intensity distribution is a commonly used model for a light source. In practice 
however, some errors are introduced due to the use of finite distances to calculate the LID 
from measured illuminance values. The relation between these errors and the test distance 
are the topic of this paper.  

To study this effect, theoretical derivations are made for a disk-shaped light source, a linear 
light-strip and the case of two point-sources. Equations are derived for the far-field intensity of 
these sources, as well as the apparent intensity, which is the intensity that is calculated from 
a measurement (or calculation) of the illuminance at a finite distance. Also, the limiting 
photometric distance is defined as the distance where the difference between them is smaller 
than a predefined threshold of 1%. 

The most significant outcome of this work is the analysis of the measurement error not only 
for the main illumination direction (on-axis) but also for other angles of emission far away from 
the main illumination direction (off-axis), such as in significant glare areas. The results show 
how sharply the errors increase with narrower beam angle of a light source. Also, a set of new 
guidelines are given. 

This topic is very relevant at present due to the high variability of LED-based light sources 
with large gaps between adjacent luminous areas and small size of the light emitting areas. In 
practice it is difficult to estimate the size of the light source and the influence of the LID to 
work with the right limiting photometric distance or to estimate the errors that may be 
encountered measuring particular types of luminaires in a photometric laboratory which has a 
fixed test distance.  
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